1	
2	
3	
4	
5	Applying XGB Regression Trees to Produce Growth
6	Percentiles
7	
8	Steven Tang, Zhen Li
9	eMetric LLC
10	
11	
12	
13	
14	Paper written for the 2019 meeting of the National Council on Measurement in
15	Education, Toronto, Canada. The views expressed in this paper are solely those of the
16	authors and they do not necessarily reflect the positions of eMetric LLC.
17	Correspondence concerning this paper should be addressed to Steven Tang, eMetric,
18	211 N Loop 1604 E, Suite 170, TX 78232. Email: steven@emetric.net.

19

20	This study compares percentile rank residuals using an XGBoost regression tree model
21	to quantile regression based SGP. Results indicate that with default hyperparameters,
22	the XGB tree based approach can exactly replicate standard SGP, and that the XGB
23	method may be further tuned to potentially predict more accurately.
24	Keywords: Gradient boosted regression tree, growth percentile ranking, student
25	growth percentile
26	Background
27	In recent years, big data methods such as gradient boosted decision trees and
28	deep neural network architectures have shown great promise in tackling a variety of
29	prediction modeling tasks, often surpassing the results from traditional methods or
30	even solving previously unsolvable prediction tasks. In this study, we investigate the
31	potential for applying gradient boosted regression trees, enabled through the XGB
32	statistical package, to the prediction task of computing student growth measures, under
33	the hypothesis that the favorable statistical properties of XGB models may allow for an
34	alternative procedure to compute growth measures similar to quantile regression based
35	student growth percentiles (SGP).
36	SGP has been used for measuring students' annual growth in many states. In

Abstract

theory, an SGP describes a student's relative progress with respect to his/her academic

NCME 2019

peers, who are students beginning at the same place (Betebenner, 2008, 2018). Quantile
regression is commonly used to estimate the conditional growth percentiles of currentyear scores based on prior year scores.

Castellano & Ho (2013) explored using percentile rank residuals (PRR) based off
of ordinary least squares (OLS) regression and found that the OLS regression method
proved to be a promising alternative to the quantile-regression based SGP method, as
the OLS regression PRR method recovers the true conditional status percentile ranks
better in certain situations. However, OLS regression is known to have strict
assumptions such as homoskedasticity of the errors and gaussian distributions of the
covariates, et al.

In this study, eXtreme Gradient Boosting (XGB) regression trees using the PRR 48 method are applied to two case study datasets as an alternative to the quantile-49 regression based SGP approach. Both XGB and quantile regression relax the 50 51 homoskedasticity assumption, but XGB goes a step further and makes no assumption that data distributions need to be gaussian or that relationships must be linear. 52 Moreover, XGB regression trees have favorable properties such as high predictive 53 54 accuracies with many possible input variables, a tweakable and tunable training 55 procedure, fast computation, and an interpretable decision-tree structure that can be illuminated after training. XGB approaches can be prone to issues of overfitting, 56 therefore requiring special consideration in model construction and interpretation. 57

NCME 2019

58	This paper proposes an XGB PRR approach to generate growth percentile ranks				
59	using recent data from a state summative assessment program. Given that quantile				
60	regression based SGP is	s relatively o	common, we will c	compare XGB PRI	R results to
61	quantile regression SG	P. We will th	nen explore adding	g additional input	features to
62	improve predictive acc	uracy.			
63]	Research Methods	5	
64	Data				
65	Scores from mat	h test admir	nistrations for grad	le 7 2016 and grac	le 8 2017 from a
66	state summative assessment were used as the data for the first part of this study. shows				
67	the descriptive statistics of the data. To obtain SGP estimates using the quantile				
68	regression method, students must have a previous-year score, and students with				
69	incomplete records are	omitted from	m the analysis. In	total, 24926 stude	nts are included.
70	Table 1				
71	Descriptive Statistics of the First Dataset				
		N	Mean Scale Score	Minimum	Maximum
	2016 Grade 7 Math	24926	2486	2250	2778
	2017 Grade 8 Math	24926	2499	2265	2802
72					
73	The second data	set analyzed	l in this study con	tains real student	scores for both
			and stady con		

75 prior years' scale scores. In total, five cohorts of students' growth measures were

⁷⁴ math and ELA test administrations from 2016 to 2018. Students in grades 5-8 have two

- calculated by XGB PRR and SGP for an extensive comparison. Table 2 presents the
- 77 descriptive statistics of the second dataset.
- 78 Table 2
- 79 Descriptive Statistics of 2018 Mathematical and ELA Test Data

			Mathematics				ELA		
Cohort	Year	Grade	Ν	N Mean S.D.		Ν	N Mean S.D		
1	2017	3	37803	2426	81	37868	2418	84	
1	2018	4	38311	2465	81	38309	2467	85	
	2016	3	37626	2423	79	37682	2420	83	
2	2017	4	38089	2463	81	38099	2461	87	
	2018	5	38684	2489	89	38776	2498	90	
	2016	4	36241	2459	79	36306	2462	86	
3	2017	5	36804	2488	85	36868	2499	90	
	2018	6	37459	2500	99	37527	2512	89	
	2016	5	35475	2485	84	35518	2499	85	
4	2017	6	36105	2497	98	36147	2511	89	
	2018	7	36528	2509	106	36585	2539	96	
	2016	6	34631	2498	97	34684	2508	84	
5	2017	7	34654	2506	101	35361	2539	95	
	2018	8	35502	2524	111	35577	2555	98	

80

81 XGB Regression Trees

The XGB Regression Tree approach relies on iteratively building a collection of simple regression trees; regression trees are decision trees that predict continuous outcomes. The iterative process starts by first creating an extremely simple predictive regression tree; such a tree might only have between 2 to 16 leaf nodes. This initial regression tree is constructed by searching through a large number of potential split

NCME 2019

87	values among all input variables and finding the splits that minimize prediction error.
88	The iterative process continues by constructing an additional regression tree of the same
89	structure, but this time constructed to minimize the <i>residual errors</i> of the first regression
90	tree. The next iterative tree is then constructed to minimize the residuals of the full
91	model thus far, and the process of iteratively creating new trees continues until
92	stopping criteria is met. As the name implies, gradient boosting uses gradient descent to
93	find the next regression tree to add to the ensemble. At the end of the building process,
94	the predictions are given by the sum of the outputs of all trees. This process of building
95	a gradient boosted regression tree was optimized in the XGB package allowing for very
96	fast computation of gradient boosted trees as well as many opportunities for additional
97	model tuning (Benjamin, Fernandes, Tomlinson, Ramkumar, VerSteeg, Miller, &
98	Kording, 2014).

For a predictive model ŷ₁ = f₁(X), where X indicates input variables, ŷ₁
indicates predications by the first tree and y indicates the observed output variable, a
loss function can be defined between the prediction and the observed outcome: l(ŷ₁, y).
During training, the first tree can be estimated by minimizing the following objective:

$$L_{1} = \sum l(\hat{y}_{1}, y) + \Omega(f_{1})$$
(1)

NCME 2019

103 Ω is a regularizing function to avoid overfitting. Then a second tree $f_2(X)$ will be 104 constructed by predicting the residuals of the first tree. The objective to minimize is as 105 follows:

$$L_2 = \sum l(\hat{y}_1 + f_2(X), y) + \Omega(f_2)$$
(2)

The process continued sequentially for a fixed number of trees (*N*). Total loss will be
progressively decreased with each additional tree. In the end, the prediction for y will
be the sum of the predictions of all trees:

$$\hat{y} = \sum_{k}^{N} f_k(X) \tag{3}$$

Compared to linear regression and quantile regression, XGB regression tree require completely different assumptions. For example, linear regression has a basic assumption that the sum of its residuals is 0. XGB regression tree, through its boosting process, instead attempts to find and model patterns in the residuals and strengthen the model with weak learners that exploit these patterns. This approach has shown to be extremely powerful in big data tasks, winning a variety of competitions where predictions need to be made based on a wide set of predictors.

- 116 Procedure of Applying XGB to Produce Percentile Ranks of Residual
- 117 To produce XGB PRR, the following steps were carried out: 1) Train a XGB118 prediction model with two or more years of consecutive scale scores for one cohort of

NCME 2019

students; 2) Use the prediction model to generate a predicted score, which is regarded 119 120 as the expected score that a student should have got in the current year; 3) Compute a current-year residual score by subtracting the predicted score from the current-year 121 observed score; 4) Calculate PRR, the percentage of students whose residual scores are 122 lower than or equal to the score of interest in the population. A function "rankdata" 123 from a python package "scipy.stats.mstats" is used to compute ranks (order statistics) of 124 each residual score. When the residual scores are tied, the average rank is used. Then 125 126 the following formula is applied to compute percentile ranks.

$$PRR = round(100 \times \frac{rank_x - 1}{N}) \tag{4}$$

Equation (4) is slightly different from the equation (4) in Castellano & Ho's (2013) 127 article, where they calculated PRR as the percentage of residual scores that are smaller 128 or equal to the score of interest. Another definition of percentile rank is the percentage 129 of residual scores less than the target score plus 0.5 of the percentages of ties in all 130 residual scores. The different definitions of percentile ranks might lead to slightly 131 different outcomes, but these differences should be minor after we round the 132 percentages to integers. In addition, PRR is forced to be located within [1,99] to compare 133 134 to SGP.

NCME 2019

135	The XGB results presented in this study use the XGB package (Chen & Guestrin,
136	2016) implemented in Python. SGP results are obtained using the SGP package
137	(Betebenner, 2018) in R. Results from two studies are presented in the following section.
138	Results and Discussion
139	The first result comes from comparing XGB PRR and SGP using just two years of
140	scale scores for a state mathematical test. In Error! Reference source not found., four
141	different models' results are shown, each trained to incorporate different input
142	variables. A hyperparameter grid search was performed to mitigate overfitting
143	concerns. Results show that the base model, where only grade 7 math is used to predict
144	grade 8 math scores, can achieve a 0.997 correlation with standard SGP.
145	However, as more input variables are incorporated, the correlation with SGP
146	goes down, but R ² with realized scores correspondingly increases. This means that the
147	XGB PRR model with more input variables disagrees more with SGP, but has better
148	model predictive accuracy relative to realized scores. This provides evidence that it is
149	operationally easy for the XGB PRR approach to replicate standard (quantile regression)
150	SGP results, but that incorporating additional explanatory variables can increase model
151	accuracy and correspondingly decrease correlation with standard SGP.
152	A trained XGB regression tree model can also be inspected to better understand
153	how the model is making decisions. There are numerous metrics that can be used.

NCME 2019

154	Figure 1 depicts the most important features used in the most complex model, which
155	used grade 7 math, grade 7 reading, and demographic variables as predictors.
156	Previous studies (Castellano & Ho, 2013; Lockwood & Castellano, 2015) found
157	that alternative estimation methods (OLS based SGP or Logit model based SGP) can
158	provide SGP estimates closer to the SGP calculated using empirical conditional
159	distributional functions (ECDF). We didn't use ECDF in the current study, although this
160	may be useful to look at in future studies. Lockwood and Castellano (2015) also showed
161	that even if the correlation between the estimates by different methods are very high,
162	the small difference between individual SGP estimates can cause significant effect for
163	teacher evaluation, which is based on group-level SGP.

164 Table 3

Input to XGB Model	Hyperparameters (All but the	Correlation	R ²
	first model was chosen via 5-	with SGP	
	fold Cross-Validation)		
G7 Math	Estimators = 100, Max Depth =	.997	.619
	1, Learning Rate = .1		
G7 Math +	Estimators = 700, Max Depth =	.985	.628
Demographics	1, Learning Rate = .04		
G7 Math + G7	Estimators = 600, Max Depth =	.951	.650
Reading	1, Learning Rate = .03		
G7 Math + G7	Estimators = 700, Max Depth =	.945	.653
Reading +	1, Learning Rate = .04		
Demographics			

165 *XGB Model Results in the Pilot Study (2016-2017 Mathematical Test)*

169 Next, using 2016-2018 students' scale score data from both mathematics and ELA

test administrations, we compared the two models with more prior years' scale scores.

171 For XGB PRR, we apply a simple XGB regression tree model with most

172 hyperparameters set as default values. The number of estimators was fixed to 125 and

173 max depth was fixed as 4 for all prediction models.

174

175

176

- 177
- 178
- 179

180

181

182

183 Table 4

184 XGB Model Results for 2018 Test Data

Output	Input Variables	Correlation with SGP	R^2
G8 Math	G6 Math+G7 Math	.991	.769
G8 Reading	G6 Reading+G7 Reading	.993	.778
G7 Math	G5 Math+G6 Math	.990	.812
G7 Reading	G5 Reading+G6 Reading	.991	.772
G6 Math	G4 Math+G5 Math	.989	.787
G6 Reading	G4 Reading+G5 Reading	.993	.763
G5 Math	G3 Math+G4 Math	.992	.781
G5 Reading	G3 Reading+G4 Reading	.992	.768
G4 Math	G3 Math	.996	.759
G4 Reading	G3 Reading	.995	.723

185

186 Table 5

187 XGB Model Results with more Input Variables

Output	Input Variables	Correlation with SGP	R^2
G8 Math	G6 Math+G7 Math+G6 Reading+G7 Reading + Demographics	.954	.788
G8 Reading	G6 Math+G7 Math+G6 Reading+G7 Reading + Demographics	.957	.794
G7 Math	G5 Math+G6 Math+G5 Reading+G6 Reading + Demographics	.958	.824
G7 Reading	G5 Math+G6 Math+G5 Reading+G6 Reading + Demographics	.956	.788
G6 Math	G4 Math+G5 Math+G4 Reading+G5 Reading + Demographics	.939	.810
G6 Reading	G4 Math+G5 Math+G4 Reading+G5 Reading + Demographics	.960	.779
G5 Math	G3 Math+G4 Math+G3 Reading+G4 Reading + Demographics	.971	.791
G5 Reading	G3 Math+G4 Math+G3 Reading+G4 Reading + Demographics	.958	.784
G4 Math	G3 Math+G3 Reading + Demographics	.966	.775
G4 Reading	G3 Math+G3 Reading + Demographics	.934	.756

NCME 2019

188	Results from Table 4 shows that the correlation coefficients between XGB PRR
189	and SGP range from .989 to .996. The correlation coefficients are equivalently high
190	across all grades and subjects. Results in Table 5 shows that when incorporating
191	additional input variables (more subjects and demographics), the correlation between
192	XGB PRR and standard SGP decreased and R ² increased. These results closely mimic
193	the trend found from Table 3, where adding more data to the XGB model decreased
194	correlation to SGP results but increased overall R ² .
195	Furthermore, results from 2018 data analysis show that the difference between
196	XGB-PRR and SGP are higher at the extreme previous year scale scores. This effect is
197	very significant for Grade 4 tests, where the input variables only include one prior year
198	test data. When the number of prior years increase, this pattern is not as clear. As
199	shown in Figure 2, for grade 8 ELA and math, the largest difference occurs for extreme
200	scoring students, but also shows a little bit in the middle. This effect was also
201	discovered in the 2017 data analysis and in a previous study (Castellano & Ho, 2013).
202	

NCME 2019

212	has additional statistical properties that may make it preferable, such as being able to
213	model more input features to achieve better predictive accuracies. Additionally, the
214	XGB framework is easy to operationalize, is robust to missing data, and is relatively
215	easy to interpret and analyze.
216	To establish the XGB PRR as a useful and viable alternative will take additional
217	research, but given how successfully the XGB approach has been applied to many other
218	big data prediction tasks, this line of research appears to be quite promising. There are
219	numerous avenues for future exploration to utilize the expressive and robust properties
220	of the XGB decision tree methodology for prediction. Additionally, other prediction
221	problems in educational statistics, such as making useful forecasts of other results
222	besides growth measures, may also be addressed by modern statistical frameworks like
223	XGB regression trees. The results presented in this study can contribute to a fuller
224	understanding of how modern statistical methods can solve or improve on problems of
225	prediction in large scale measurement.
226	
227	
228	
229	
230	

2	2	1
2	J	Т

References

- 232 Benjamin, A.S., Fernandes, H.L., Tomlinson, T., Ramkumar, P., VerSteeg, C., Miller, L.,
- 233 & Kording, K.P. (2018). Modern machine learning far outperforms GLMs at predicting
- spikes. Frontiers in Computational Neuroscience, 12 (56), 1-13.
- 235 Betebenner, D. W. (2008). Toward a normative understanding of student growth. In K.
- 236 E. Ryan & L. A. Shepard (Eds.), The future of test-based educational accountability (pp. 155–
- 237 170). New York, NY: Taylor & Francis.
- 238 Betebenner, D. W. (2018). SGP: Student growth percentile and percentile growth
- 239 Trajectories [R package version 1.8-0.0].
- 240 Castellano, K. E. & Ho, A. D. (2013). Contrasting OLS and quantile regression
- 241 approaches to student "growth" percentiles. Journal of Educational and Behavioral
- 242 *Statistics*, *38*(2), 190-215.
- 243 Chen, T. & Guestrin, C. (2016). XGB: A Scalable Tree Boosting System. Paper presented in
- 244 Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
- 245 Discovery and Data Mining, San Francisco.
- 246 Lockwood, J. R. & Castellano, K. E. (2015). Alternative statistical frameworks for student
- 247 growth percentile estimation, *Statistics and Public Policy*, 2:1, 1-9
- 248